International Network for the Training of Early stage Researchers on Advanced Quality control by Computed Tomography

InterAQCT: October 2013 – September 2017

The non-destructive quality control of a wide variety of high-added value products, produced by innovative manufacturing techniques, remains a challenge. Examples include additive manufacturing parts, micro parts, and fibre reinforced composite parts. Common to these workpieces is the dependency of their performance on internal and inaccessible elements. Nevertheless, customers in multiple sectors are requesting certified quality and reliability.

Quantitative inspection of complex composite aeronautic parts using advanced X-ray techniques

QUICOM: October 2012 – September 2015

Recent years have seen a rapidly growing demand from aeronautic industry regarding function-oriented, highly integrated, energy-efficient and lightweight structures. In advanced composites a promising material was found, which integrates these characteristics allowing for continuously elevating the complexity of new components concerning shape and internal structure. The consequences of this increasing complexity are tremendously raising efforts in quality control, as conventional nondestructive testing methods are reaching their limits and become either extremely time-consuming or unusable for a full inspection. QUICOM aims at taking the next big step in the development of aeronautic components by...

Compact X-ray computed tomography system for non destructive characterization of nano materials

NanoXCT: May 2012 – April 2015

Within the past decades, advances in miniaturization from micro to nano-scale have had dramatic impacts on our lives. Consumer electronics, which once occupied large volumes, now fit in the palm of a hand. But nanotechnology does not only improve electronics. Also material sciences, chemical engineering or biology are strongly profiting from nanotechnology. The tremendous achievements in all of these areas would not have been possible without corresponding material analytics techniques. Material analytics for nano-scale characterization currently cover destructive methods, surface inspection methods or 2D methods. To date it is not possible to get a comprehensive representation of a specimen including internal and external 3D-structure analysis as well as a chemical analysis without destroying the sample. In this respect nano-scale material analytics is currently on the edge of a new era, which is targeted in NanoXCT. The project addresses the limitations of conventional techniques using 3D X-ray computed tomography, which allows for a non-destructive and fully three-dimensional characterization of specimens.

Aktuelle Seite: Home Sitemap Category EN Research Projects